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Abstract 
 
This is a first study of the effects of building-level energy consumption and the time-series risk of 
the energy pricing on the default risk of commercial mortgages. We apply measures of energy 
consumption using information on building-level source energy use intensity (EUI) and site EUI 
obtained from a unique data set that merges the building-level data collected through the 
benchmarking ordinances of Boston, Chicago, Minneapolis, New York, Philadelphia, and 
Washington, DC with origination and performance data for commercial mortgages that have 
been securitized into commercial mortgage backed securities. We develop a unique measure of 
energy price risk called the electricity price gap, computed as the difference between realized 
and expected electricity prices since the date of loan origination. We find that building-level 
source EUI and the electricity price gap are statistically and economically associated with 
commercial mortgage defaults. Using building energy simulations, we find that building asset 
characteristics and operational practices that affect source EUI have very important effects on 
the likelihood of default. Overall these results suggest that building-level energy efficiency and 
energy price risk do move the needle on default risk. Since commercial real estate investors are 
the residual claimants on this risk exposure, these results show the potential importance of 
accounting for energy efficiency and price risk as part of the loan risk assessment process in 
new mortgage originations. 
 
  



5 

1 Introduction 
The U.S. commercial real estate mortgage market is very large and default is the primary risk 
for commercial mortgage investors.1 As is well known, commercial mortgage default is usually 
triggered by reductions in commercial real estate values either due to the loss of tenants or to 
significant reductions in the net operating income (NOI) generated by the buildings. Given the 
importance of net operating income to building performance, NOI is also an important 
determinant of the two primary commercial mortgage underwriting metrics: the loan to value 
ratio and the debt service coverage ratio.2 Surprisingly, recent findings from a Department of 
Energy scoping study indicate that commercial real estate underwriters typically do not consider 
the energy efficiency or the energy use profile of commercial real estate when evaluating the 
default risk of new loan applications (Mathew et al. 2016). Even though it is known that energy 
expenses comprise on average 30% of operating cost and that energy costs are volatile (Jaffee 
et al. 2013a, BOMA 2009), mortgage underwriters usually do not have access to information on 
building-specific energy use in the appraisal, the pro forma, or the engineering reports for 
buildings. As a result, commercial mortgage lenders generally subscribe to the idea that the 
energy inefficiency of real estate assets is not a sufficiently important cause of commercial 
mortgage default to warrant the additional cost of its evaluation--that is, lenders do not believe 
that energy efficiency can “move the needle” on default incidence. 
 
Counter to this view, there is a recent literature that has considered the effect of green building 
labels on commercial real estate values (see, for example: Eichholtz et al. 2010; Fuerst and 
McAllister 2011; Eicholtz et al. 2013; Jaffee et al. 2013b; Deng and Wu 2014) and has found a 
strong association between the presence of an energy efficiency label, such as Energy Star or 
LEED Certification, and higher commercial building values and rents. However, the hedonic 
specifications (see, Rosen 1974) used in these studies often do not consider the buildings’ 
energy costs. The cause of this benefit could either be associated with real energy efficiency of 
the building, although this is usually unmeasured, or it could be due to the “plaque-in-the-lobby-
effect” or other labeling-related attributes (See, for example the label of an “architect designed 
building,” as in Vandell and Lane (1989)). 
 
Another recent literature that more directly addresses the relationship between the energy 
efficiency of commercial real estate and mortgage default has applied reduced-form hazard 
models of commercial mortgage default that include indicator variables for whether or not 
buildings collateralizing the mortgages have an Energy Star or LEED Certification label (see, for 
example: Seslen and Wheaton 2010; An, Deng, Nichols, and Sanders 2013; An and Pivo 2015). 
Here again, these studies do not consider the operating (particularly energy) costs of the 

                                                
 
1 In 2015, the total outstanding stock of commercial mortgages was $2.5 trillion, according to the Federal Reserve 
Statistical Release, Financial Accounts of the United States, Flow of Funds, Balance Sheets, and Integrated 
Macroeconomic Accounts, U.S. Flow of Funds, https://www.federalreserve.gov/releases/z1/20160916/z1.pdf 
2 The loan to value ratio is the ratio of the outstanding balance on the loan to the total building value where total 
building value is the discounted present value of NOI over an infinite horizon. The debt service coverage ratio is the 
ratio of the net operating income over the debt service. 
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buildings. The presence of the labels might be expected to have a negative effect on the 
probability of default but the cause is indeterminate. 
 
A second strand of the empirical mortgage default literature analyzes commercial mortgage 
default using structural option pricing models. Option pricing models account for the underlying 
macro-determinants of option exercise, interest rates, and NOI dynamics, often with frictions 
(see, for example: Schwartz and Torous 1989; Titman and Torous 1989; Stanton and Wallace 
2014). This literature was extended by Jaffee et al. (2013a) to explicitly consider a four-factor 
option valuation framework that included the cost dynamics of both natural gas and electricity in 
addition to interest rates and rents. Their model explicitly accounts for the energy price and 
consumption risk of loans on individual office buildings in terms of the energy efficiency of the 
buildings and the energy cost characteristics of their locations. They find that not accounting for 
the ex ante energy consumption of a commercial office building leads to a 5% over-pricing of 
mortgages (due to the under-prediction of default). One limitation of the paper was the lack of 
information on actual building-level energy efficiency. Instead, the dynamics were calibrated to 
energy dynamics and loan level mortgage default performance data. However, the pricing 
results were based on performance simulations for mortgages collateralized by buildings of a 
given profile. A second limitation with the empirical work was that it was based on the wholesale 
pricing of electricity and natural gas during a period of time in which the commercial building 
adoption rates for competitive sources of electricity supply were poorly understood and state-
level energy retail choice deregulation was rather new (so that uptake among owners was likely 
very low). 
 
The purpose of this report is to evaluate the impact of actual energy efficiency and energy cost 
on the default performance of securitized commercial mortgages between 2000 and 2016. The 
study uses building-level energy efficiency metrics obtained from six cities in the U.S. that 
require benchmarking for commercial real estate assets. Using the addresses of each building 
in the benchmarking city sample, we merge these data with the reported locational marginal 
pricing for the appropriate independent system operator (ISO) that sets wholesale prices for the 
building and then remerge each building to a commercial mortgage data set, obtained from 
Trepp, that records the contracting structure of the mortgage, its property characteristics, and 
default performance of the mortgages over time. This analysis is thus the first commercial 
mortgage default study that explicitly considers energy efficiency, mortgage contracting and 
performance structure, and the location-specific cost of energy to the mortgage borrower and 
thus causally relates energy efficiency to commercial mortgage default. Our analysis is also 
unique because it takes advantage of the data now being generated from the benchmarking 
cities. These data are especially advantageous because they include information on three 
different important energy metrics that are used by engineers to gauge the energy efficiency of 
commercial buildings: two measures of energy use intensity (EUI) – site EUI and source EUI; 
and the Energy Star score. 
 
Our study is designed to use the same class of empirical mortgage default models that are used 
in the Dodd Frank Act Stress Testing (DFAST) environment. Our analysis takes advantage of 
the growing rates of adoption on the part of commercial real estate building managers to 
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competitively source their energy consumption. Beginning in the late 1990’s, a new restructured 
energy market was introduced in a number of states allowing large industrial and commercial 
energy consumers to contract their demands from independent service providers (see More and 
Kirsch 2013), offering more flexible and competitive pricing structures than those offered by the 
traditional utility companies. Typically, these service providers adopt a strategy of aggregating 
the demand of individual customers, procuring energy directly from the wholesale markets, and 
employing the existing futures, forward, and options markets of electricity and natural gas for 
managing the energy price risks from their operations. They offer a whole spectrum of pricing 
structures to their customers, ranging from a fixed price for the term of the supply contract to 
hourly variable rates indexed from the ISO or regional transmission organization (RTO) 
locational marginal price. In a fixed price structure the provider needs to bear the energy price 
risk when procuring energy in the wholesale markets, and would charge a premium relative to 
customers using a dynamic pricing  rate (i.e., one that is responsive to the underlying wholesale 
market). As expected, retail markets’ deregulation created incentives for large energy 
consumers to adopt pricing structures that reduce energy costs, such as a variety of dynamic 
pricing rates, and to respond to price signals by adjusting their demand. The overall effect is that 
energy price fluctuations experienced by some large industrial and commercial consumers now 
reflect those of the wholesale markets. 
 
As shown in Figure 1, the rates of industrial and commercial real estate adoption of these more 
competitive supply sources for electricity are as high as 80 – 90% in Connecticut, DC, Illinois, 
Maine, Maryland, New York, Ohio, Pennsylvania, Rhode Island and Texas. Other states that 
have a 50% adoption rate include Delaware, Montana, New Hampshire, New Jersey, whereas 
Massachusetts has about a 20% adoption rate. Four other states, including California, 
suspended retail choice for residential customers, while still allowing large industrial and 
commercial customers to choose their supplies. Overall, for the fourteen jurisdictions shown in 
Figure 1, 44% of 37.8 million customers took service from competitive providers as opposed to 
regulated utilities. With this evolution in the energy supply markets it is now reasonable to view 
wholesale pricing as a proxy – albeit with a time lag - for the energy pricing actually faced by 
commercial real estate building owners. 
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Figure 1.  Percentage of building users by type that use a competitive supply source for electricity 

service provision in 2014. Source: More and Kirsch (2013) 
 
 
The paper is organized as follows. Section 2 presents our modeling approach and data-merging 
strategy for the mortgage and commercial real estate data that are used in our analysis. Section 
3 presents the energy use metrics in more detail. Section 4 presents our measure of the energy 
pricing risk associated with the locational marginal prices of electricity in ISO/RTO regions. In 
Section 5, we present our empirical mortgage default analysis controlling for the energy 
efficiency profile of the building and the locational cost of energy. We find a strong association 
between energy factors and default. In Section 6, we do a scenario analysis showing the 
impacts of building asset and operational characteristics on default risk. Section 7 concludes. 
 

2 Default Risk Model with Energy Factors 

2.1 Mortgage and Energy Data 

Obtaining large data sets with standardized energy efficiency metrics that can be compared 
across building types and geographic regions is a key challenge for studies of commercial 
real estate energy efficiency. The energy efficiency data problem for this study is even more 
demanding because the ideal data for our purposes would include time-variant pricing and 
consumption data for specific buildings, loan-level performance and contracting data for the 
same buildings, and a representative sample of buildings across market segments. An 
additional significant challenge is the lack of specific energy tariff data for individual 
buildings. 
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Our primary loan-level origination and performance data and our building-level energy efficiency 
data sets were obtained respectively from Trepp, LLC and through the benchmarking 
ordinances of Boston, Chicago, Minneapolis, New York City, Philadelphia, and Washington, DC. 
 
Trepp data 
We estimate the default probability models using a sample of loans on commercial office 
buildings that were originated between 2000 and 2012. These data were obtained from Trepp 
LLC’s loan-level origination and performance data and include information on the structure of 
the mortgage contract, property and leasehold characteristics, and monthly performance 
records. Trepp obtains its loan-level origination and performance information from monthly 
master servicers’ reports using a standardized reporting format defined in the Commercial Real 
Estate Finance Council’s (CREFC) Investor Reporter Package (IRP). The total Trepp data set 
includes about ten million monthly observations of loan performance information, including the 
status of the loan, such as prepaid, delinquent, foreclosed or current, in each month. It also 
contains updated loan balance, debt service coverage ratio, occupancy rate and loss 
information, if reported by the servicer, as well as detailed information on the contractual 
structure of the loan. The nearly ten million loan performance records in our database cover 
90,000 CMBS loans and about 700 CMBS deals. All the loans that we consider are for single 
properties so each loan can be tied to a specific location for analysis of locational features. One 
important limitation is the lack of data on net vs. gross leases and our analysis therefore did not 
consider impact of lease type on default risk.   
 
We use a strong form of default in this study. A property has to be in bankruptcy or real estate 
owned (REO) status, meaning that the bank has exercised its right to take back the loan due to 
foreclosure, for it to be treated as defaulted in this study. We use a default indicator variable that 
is one on the first date that Trepp records the loan to be in bankruptcy, foreclosure, or REO. 
 
Benchmarking data 
The energy consumption data used in this study were obtained under the data collection efforts 
mandated by energy benchmarking ordinances in Boston3, Chicago4, Minneapolis5, New York 
City6, Philadelphia7, and Washington, DC.8 Although each city has its own local ordinance, the 
common requirements are that all privately owned properties with individual buildings of more 
than 50,000 square feet and properties with multiple buildings with a combined gross floor area 
of more than 100,000 square feet must annually measure and report their energy and water use 
                                                
 
3 Building Energy Reporting and Disclosure Ordinance (BERDO), url: https://www.cityofboston.gov/eeos/reporting/. 
4 Chicago Energy Benchmarking Ordinance, urlhttps://www.burnhamnationwide.com/final-review-blog/chicago-
energy-benchmarking-ordinance-update. 
5 Minneapolis Building Benchmarking Ordinance 47.190 
http://www.ci.minneapolis.mn.us/environment/energy/WCMS1P-120169. 
6 New York Local Law LL84,http://www.nyc.gov/html/gbee/html/plan/ll84.shtml. 
7 Philadelphia Building Energy Benchmarking Ordinance, urlhttps://www.wegowise.com/compliance/philadelphia- 
building-energy-benchmarking-ordinance. 
8 Clean and Affordable Energy Act of 2008, https://www.google.com/webhp?sourceid=chrome-
instant&ion=1&espv=2&ie=UTF-8#q=Washington+DC+energy+benchmarking+ordinance 
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to their respective city building departments. New York first collected data under its ordinance in 
2011, Chicago, Boston, Philadelphia, and Minneapolis’ ordinances have been in place since 
2013, and Washington, DC’s was part of the Clean and Affordable Energy Act of 2008. As 
discussed previously, the building-level data from the benchmarking ordinances include the 
building address, site EUI, source EUI, and Energy Star score. These metrics are described 
further in Section 3. 
 
We took the data published by the cities and then cleansed them using the data-cleansing rules 
of the DOE Building Performance Database (BPD). The cleansed version of these 
benchmarking data were used for this analysis.9 Overall, there were about 10,000 observations 
in the benchmarking data. We focus on the commercial office and retail property types for this 
study.10 

2.2 Model Form 

As shown in Figure 2 our empirical reduced-form model of mortgage default requires the 
integration of multiple types of data. As shown in the far left-hand side of the schematic, we 
started with the cleansed version of the benchmarking disclosure data. As noted earlier, the 
benchmarking data provide two important measures of energy use intensity (EUI), the site EUI 
and source EUI, as well as the Energy Star score for each building. These are explicit measures 
of the relative energy consumption of each building. If energy efficiency actually moves the 
needle on default it must be that the more efficient buildings are less likely to default and that 
this effect is statistically significant.  
 

 
Figure 2.  Data construction for empirical default hazard models. 

 
                                                
 
9 See, https://bpd.lbl.gov/ for the BPD and https://energy.gov/eere/ buildings//downloads/data-preparation-process-
buildings-performance-database for the data cleansing rules. 
10 We find that the measures on a given building do not vary importantly over time, so we use the 2014 data as a 
proxy for the building’s energy consumption 
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Following the data set construction sequence outlined in Figure 2, we geo-coded the building-
level benchmarking disclosure data and merged them with loan-level commercial mortgage 
origination and performance data obtained from Trepp LLC. The Trepp data provide information 
on loans that were securitized into the commercial mortgage backed securities (CMBS) market. 
These loans tend to be larger on average than commercial mortgages that are retained on bank 
balance sheets (see, for example, Ghent and Valkanov, 2015). This matching process gives us 
a data set with measures of energy efficiency at the building level, information on the loan 
contracts, the leasehold structure of the building, the time-series performance of the loan, as 
well as property value and characteristics. 
 
Jaffee et al. (2013a) established, in a structural model, that both energy price and consumption 
are important determinants of mortgage default. Building consumption and its volatility are 
determined by a building’s characteristics (e.g., its envelope, HVAC and lighting systems), its 
operations, and weather conditions. Especially in deregulated markets, energy consumption can 
also be determined by energy prices. Following the option pricing literature (see, for example 
Kau and Keenan 1995; Schwartz and Torous 1989; Titman and Torous 1989; Stanton and 
Wallace 2014), default options become more valuable with volatility and since the default option 
is owned by the building owner we would expect more commercial mortgage default in more 
costly and volatile energy supply markets. In our reduced form model, energy efficiency (source 
EUI, site EUI and Energy Star score) and wholesale energy prices are proxies for the energy 
consumption and price risk of commercial buildings, respectively. 
 
The next step in the data construction process is to assign each mortgage in the matched loan 
and benchmarked building data set with a proxy reflecting the actual energy cost of the building. 
More specifically, we use historical monthly average ISO/RTO zonal price for the load region 
where the commercial property is located. As will be discussed below in Section 4, our proxy for 
building energy prices is the wholesale market locational energy prices, using a new measure 
that we call the “electricity price gap.” This measure is intended to capture the energy price risk 
at the geographic location of the building. We map all of our buildings into their respective ISO 
zonal price region and calculate for each loan the average monthly on-peak locational marginal 
price. 
 
The final stage of the data construction process, as shown in Figure 2, is to add other important 
macro-economic determinants of mortgage defaults such as a monthly time series of interest 
rates. We use this interest rate data to construct a measure of the coupon gap, the difference 
between the current interest rate and the mortgage contract rate, which could be viewed as 
either a measure of the moneyness of the prepayment option or as the relative costliness of the 
current mortgage. Depending on the channel the sign on this factor could be either positively or 
negatively associated with default. Similarly, we account for the buildings’ prices with the loan-
to-value (LTV) ratio at origination, which is a well-populated loan characteristic in the data.11 

                                                
 
11 Some loans in the Trepp data have time-varying LTV ratios but we found both a great deal of missing data and 
suspiciously static LTVs, so we chose to use the origination LTV as a proxy. 
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3 Energy Use Metrics  

3.1 Energy Use Intensity 

A key feature of our study is to have standardized measures of the annual energy consumption 
per unit area, expressed in kBtu per square foot. The measures were obtained from the 
building-level benchmarking data. The first measure of energy use intensity (EUI) is site EUI, 
which measures the amount of heat and electricity consumed per square foot as reflected in the 
building utility bills. The second measure, the source EUI, measures the total amount of raw fuel 
that is required to operate the building per square foot including all transmission, delivery and 
production losses.12 
 
Source EUI is considered the “gold standard” measure of energy efficiency because it provides 
the most equitable assessment of building-level energy efficiency. Billed site energy use is the 
primary component of the site EUI and energy billing structures reflect a combination of primary 
energy (the raw fuel that is burned to create heat and electricity) and secondary energy (the 
purchased energy product created from a raw fuel). Units of primary and secondary energy 
consumed at a site are not directly comparable because one represents a raw fuel while the 
other represents a converted fuel within the region. For this reason, site EUI does not provide 
an equivalent thermodynamic assessment for buildings with different fuel mixes and system 
efficiencies. This is especially pronounced in the case of fossil fuel-generated electricity, which 
generally requires about three units of raw fuel for every unit of electricity produced. 
 
In contrast, source EUI incorporates all production, transmission, and delivery losses, which 
accounts for all primary fuel consumption and enables a complete assessment of energy 
efficiency in a building. Source energy traces the heat and electricity requirements of the 
building back to the raw fuel input, thereby accounting for any losses and enabling a complete 
thermodynamic assessment. Higher source EUI and higher site EUIs both indicate less efficient 
buildings, so we would expect a positive and statistically significant association between these 
energy efficiency measures and the likelihood of commercial mortgage default. It is also worth 
noting that in general, source EUI is considered to be better than site EUI as a proxy for energy 
cost, which is the metric that is directly used in NOI calculations.  

3.2 Energy Star Score 

The EPA Energy Star score is a rating algorithm based on building characteristics and utility 
bills that is scaled between 1 and 100, with 100 representing the highest level of energy 
efficiency.13 A score of 50 represents a median energy performance, while a score of greater 
than 75 may allow the building to be eligible for Energy Star certification. The goal of the Energy 
Star program is to provide comparisons of building energy efficiency relative to a national peer 

                                                
 
12 See,  https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/use-portfolio-
manager/understand-metrics/difference 
13 See,  https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/use-portfolio-
manager/understand-metrics/how-1-100 
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group. For this reason the index is constructed using a national-level source-site conversion 
ratio. The use a single national source-site conversion standardizes the Energy Star score such 
that although two buildings with equivalent energy efficiency in two different regions may have 
different absolute energy consumption, perhaps owing to weather conditions, the Energy Star 
score will be equivalent. Since higher scores imply more efficient buildings, we would expect a 
negative and statistically significant association between the Energy Star score and the 
likelihood of commercial mortgage default. 

4 Electricity Price Gap 
Another key metric for empirical analyses of commercial real estate energy efficiency is actual 
energy prices. In addition, another factor is the relative risk of those prices. We measured the 
difference between forecasted and actual energy costs over the mortgage holding period to 
provide a measure of building-specific electricity price risk. We term this the electricity price gap. 
We focus on electricity prices because across all commercial buildings in the U.S., electricity 
accounts for 62% of energy use.14 
 
Figure 3 shows the geographic territories covered by the independent system operators (ISOs) 
in North America. ISOs serve as arms-length, third-party pricing organizations for utility 
companies and independent power generators, along with their primary role of ensuring that, at 
any point in time, the power grid (power plants, substations, and transmission lines) is 
dispatched at its minimal possible cost while guaranteeing system reliability. The ISO creates a 
competitive market for power generation by giving no preference on dispatching a utility-owned 
generator over a competitive generator. When planning and executing the system dispatch, 
ISOs also conduct the day-ahead electricity market, and the real-time (or “spot”) market 
respectively. 
 

 
Figure 3.  Independent System Operators in North America. Source: Federal energy Regulatory 

Commission (FERC) 

                                                
 
14 See, Energy Star Portfolio Manager, Technical Reference, https://portfoliomanager.energystar. 
gov/pdf/reference/ENERGY\%20STAR\%20Score.pdf 
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Most ISOs in the U.S. use a system called locational marginal pricing (LMP) to establish the 
price of energy in the wholesale electricity market. At each time interval (typically 15 minutes) 
the ISO optimizes the dispatch of generators and calculates a locational marginal price for each 
node in the power grid. Zonal LMPs are derived by averaging prices over nodes in a zone of 
interest for market participants, sometimes choosing nodes covered by an electric utility 
territory. These zonal prices also serve as a benchmark for settlements of financial transactions 
and contracts between market participants such as utilities, generators, and market makers. 
Figure 4 and Figure 5 show the zone maps for the New York ISO and PJM. Note that New York 
City falls into NYISO Zone J, while Chicago is within PJM’s Commonwealth Edison (ComEd) 
zone. 
 
 

 
 

Figure 4.  New York ISO zone map. Figure 5.  PJM zone map. 
 
 
Table 1 lists corresponding ISOs for the cities analyzed in our study, as well as the zonal LMPs 
that best reflect the electricity prices faced by the commercial real estate properties. Our study 
covers mortgages originated from 1999 through 2012. The ISOs’ LMP time series for some 
cities, however, do not go as far back as 1999. For the missing time periods, we choose an 
alternative time series that is geographically closest to the corresponding cities. 
 

Table 1.  Cities and zonal locational marginal prices 
 Primary Time Series Alternative Time Series 
City ISO ISO Zone Start of 

time series 
ISO ISO Zone Start of 

time series 
Boston NEISO NEMASSBOST 2/1/2004 PJM ZONE  PPL 4/1/1999 
D.C PJM PEPCO 4/1/1999    
Chicago PJM COMED 4/1/2005 PJM AGGREGATE DPL NORTH 4/1/1999 
Minneapolis MISO MINN.HUB 3/1/2006 PJM AGGREGATE DPL NORTH 4/1/1999 
New York NYISO Zone J 10/1/2000 PJM ZONE  JCPL 4/1/1999 
Philadelphia PJM PECO 4/1/1999    
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For our analysis, we first collected individual files with hourly locational marginal prices directly 
from the ISOs’ websites. We then consolidated the data by calculating a time series of monthly 
average locational marginal prices for the on-peak hours.15 On-peak hours better reflect the time 
and days of the week when commercial buildings perform most of their business activities, and 
consequently when energy consumption is highest. The electricity price gap is computed by 
summing the deviations of a proxy for the realized monthly energy expenditures from a proxy for 
the “expected” monthly expenditures that we assume could have been anticipated by the 
borrower, and/or lenders, at the time of mortgage origination (Figure 6). Formally, the electricity 
price gap for a commercial mortgage within ISO zone k and originated at a time period t0 is 
expressed as 
 

pgapk (t0 ,t) = lmpk (s)− hlmpk ,month(s) (t0 )
s=t0

s=t

∑ ,
 

 
where t is a time period defined at any distribution date over the observed mortgage payout 
period, lmpk (s) is the monthly average on-peak locational marginal price at zone k for the time 
period s, and hlmpk (t0) is a 12-row vector holding the historical monthly average locational 
marginal prices observed at the mortgage origination period. This price vector is our proxy for 
the expected energy prices for each month of the year. The price difference at time s is 
calculated by indexing the corresponding historical monthly average price vector at origination 
hlmpk (t0) by month(s), [s = 1, 2, ...12] and subtracting this value from lmpk (s). 
 
A high cumulative price difference, or the gap, signals higher than expected total energy 
expenditures since mortgage inception. This creates a cumulative deficit in NOI, which in turn 
increases the likelihood of default. The electricity price gap depends on the region where the 
property resides, and both the time of mortgage origination and the history of the locational 
marginal prices after the mortgage origination. The gap will likely be positive if the mortgage 
origination happened at a time when energy prices were relatively low and not expected to rise 
much. Likewise, it will likely be negative if origination happens at a price peak. Finally, as a 
proxy, our measure of the electricity price gap summarizes the full history of energy 
expenditures through the life of the mortgage. In a simple way, it capitalizes monthly cash flow 
variations of energy expenditures and in doing so, captures important time dependencies during 
the life of the mortgage that influence mortgage delinquency and default. 
 

                                                
 
15 For the East Coast ISOs, on-peak hours are defined as non-holiday weekdays hours starting at 7:00:00 and 
ending at 22:59:59.  
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Figure 6.  Schematic for the electricity price gap 

 
 

5 Results: Default Risk Model 
We estimate two specifications to determine the degree of association between commercial 
loan default and energy efficiency. In both specifications, we are using a non-time-varying 
specification for estimating the default probabilities similar to the specification used in Schwartz 
and Torous (1989). We estimate both a linear probability model and a logistic regression model 
that controls for the underwriting characteristics of the loan at origination and for the macro-
factors such as the spread between the coupon on the mortgage and the current 10-year 
Treasury rate, the site EUI, the source EUI, and the electricity price gap as measured for the 
loan at the time of default or at the end of the holding period, whichever comes first. This 
specification thus does not control for the hazard of default, the probability that the loan defaults 
on a given month given that it has survived up to that month, because only the 10-year Treasury 
rate and the electricity price gap are truly time-varying. All of the other co-variates, including the 
site and source EUI, do not really evolve over the analysis period. Use of a hazard specification 
would also require a further modification of the functional form of the baseline hazard since the 
balloon rollover date induces a nonlinear increase in the hazard at the balloon due date. To 



17 

avoid imposing functional form restrictions we estimate the more robust linear probability and 
logistic regression models.16 

5.1 Summary Statistics 

The intersection of the Trepp securitized commercial mortgage data and the benchmark data 
was rather small, with only about 1900 observations found to be common across the two data 
sets. The likely reason for this is that the Trepp loans, on average, are for larger real estate 
assets and the property types are heavily skewed toward office, industrial, retail, and multi-
family, whereas the benchmark data include many government and institutionally owned 
buildings such as schools. Given the small number of multi-family properties in our merged data 
set, we focus on the office properties so that the sample is as large and standardized as 
possible. We have properties from all six cities; however, because the benchmark data 
collection effort started earlier in New York and Washington, DC, there is somewhat more 
representation in the sample for those two cities than the other four. 
 
We report the summary statistics for both the full merged sample and the sub-sample of 
office/retail properties. Table 2 and Table 3 present the summary statistics for the full and office 
samples respectively. They also report summary statistics for the loans that were in bankruptcy, 
REO, or foreclosure and for the loans that were current over the analysis period. As shown in 
both the full sample and the office sub-sample, the defaulting loans tend to be larger, have 
consistently higher source and site EUIs, as well as lower Energy Star scores. They also tend to 
have shorter due dates for the balloon payment on the loan17. 
 
Interestingly, the underwriting criteria on the loans at origination, such as the loan-to-value 
ratios, are quite similar so these loans do not appear to be the result of riskier underwriting.  
 
 
 
 
 
 
 
 
 
 
 

                                                
 
16 Within the Dodd Frank Act Stress Testing (DFAST) framework, the logistic regression model is the most widely 
used specification to estimate of the probability of commercial mortgage default. 
17 Commercial mortgages tend to amortize over a different horizon than the date that their full principal balance is due 
and payable in full. This structure reduces the installment payments on the loan but it increases its risk because the 
full balance of the loan must be paid sooner. Commercial mortgage therefore face a known increase in risk at the 
time that the balloon is due. They must either sell the building or refinance on the balloon date or risk defaulting on 
the remaining principal. 
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Table 2.  Summary Statistics for Merged TREPP and Benchmarking data: Full Sample 
 No. of obs. Mean Std. Error Minimum Maximum 
Foreclosure/REO = 0      
Source EUI 873 158.06 61.88 5.3 309.6 
Site EUI 922 79.93 28.98 21.56 145.17 
Energy Star Score 762 66.927 23.416 1 100 
Loan-to-Value Ratio (%) 920 44.18 27.39 0.3 89.87 
Origination Contract Rate (%) 907 6.03 1.01 2.09 9.2 
Percentage Leased at Origination (%) 674 94.34 7.87 57.8 100 
Rentable Square Footage 471 518,428.28 559,901.66 3,650 4,150,000 
Origination Net Operation Income ($000) 862 6,622.82 12,506.34 171.58 118617.23 
Time to Maturity on Balloon (months) 922 118.10 32.95 24 240 
Origination Loan Balance ($ Millions) 897 35.74 61.61 0.5 806 
Electricity Price Gap 922 136.55 2,263.61 -5,095.26 5,349.06 
Foreclosure/REO = 1      
Source EUI 74 197.91 63.67 55.1 304.7 
Site EUI 80 86.56 28.98 21.00 289.24 
Energy Star Score 66 62.67 24.22 7 100 
Loan-to-Value Ratio (%) 78 66.99 14.13 5.3 80.99 
Origination Contract Rate (%) 79 6.16 1.05 3.59 8.84 
Percentage Leased at Origination (%) 77 93.44 8.63 66.5 100 
Rentable Square Footage 80 608,004.85 515,287.87 51,110 1,560,000 
Origination Net Operation Income ($000) 75 20,114.05 36,697.63 279.121 118617.23 
Time to Maturity on Balloon (months) 80 100.38 33.89 36 144 
Origination Loan Balance ($ Millions) 63 58.05 35.02 33 180 
Electricity Price Gap 80 -113.83 1,400.53 -3,630.24 4,738.01 

 

Table 3. Summary Statistics for Merged TREPP and Benchmarking Data:  
Office, Mixed Use, Retail Properties 

 No. of obs. Mean Std. Error Minimum Maximum 
Foreclosure/REO = 0      
Source EUI 434 190.40 58.93 5.3 309.6 
Site EUI 471 79.75 31.45 1.2 289 
Energy Star Score 434 71.62 18.79 2.80 100 
Loan-to-Value Ratio (%) 469 61.78 15.38 7.3 89.87 
Origination Contract Rate (%) 460 5.99 1.10 2.09 8.88 
Percentage Leased at Origination (%) 454 94.06 7.55 59.3 100 
Rentable Square Footage 471 518,428.28 559,901.66 3,650 4,150,000 
Origination Net Operation Income ($000) 432 10,436.86 16,402.73 177.989 118617.23 
Time to Maturity on Balloon (months) 471 110.60 28.98 24 240 
Origination Loan Balance ($ Millions) 455 59.24 75.06 1.1 806 
Electricity Price Gap 471 54.88 2,155.36 -5,007.82 4,199.76 
Foreclosure/REO = 1      
Source EUI 58 209.29 61.16 55.10 304.70 
Site EUI 64 85.68 29.85 21.40 145.17 
Energy Star Score 51 67.92 24.23 13.00 100 
Loan-to-Value Ratio (%) 63 69.03 11.04 35.3 80.99 
Origination Contract Rate (%) 63 6.12 1.04 3.59 8.84 
Percentage Leased at Origination (%) 63 93.60 8.23 67.4 100 
Rentable Square Footage 64 692,870.69 529,595.88 54,800 1,560,000 
Origination Net Operation Income ($000) 60 20,114.05 36,697.63 279.121 118617.23 
Time to Maturity on Balloon (months) 64 98.72 33.89 36 144 
Origination Loan Balance ($ Millions) 63 58.05 54.05 0.77 258.48 
Electricity Price Gap 64 -22.12 1,442.3 -2,842.93 4,738.01 
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5.2 Source EUI and Default Risk 

The specification for our preferred measure of energy efficiency, source EUI, is reported in 
Table 4. As shown, despite the property heterogeneity in the full sample, the fully saturated 
model with fixed effects from the origination year shows the log source EUI to be positive and 
statistically significantly associated with the likelihood of default. Energy efficiency (i.e. lower 
source EUI) appears to be a strong mitigating factor for default. Similarly, the electricity price 
gap also has a positive and statistically significant association with the default of commercial 
mortgages, suggesting that properties that are exposed to more energy cost risk – all else being 
equal -- are more likely to default. All of the other underwriting covariates also have the 
expected sign. The longer the time to the balloon, the lower the default risk, and the higher the 
original loan-to-value ratio, the higher the default risk. Interestingly, comparing the fully 
saturated model with the model that is only a function of log source EUI suggests that 
introducing the electricity price gap as a measure of price risk reduces the positive effect of 
efficiency on default but it remains a statistically and economically significant variable. 
 
The results for the office-only sample are similar both for the linear probability of mortgage 
default and for the logistic regression model. Even in the smaller sample, the statistical and 
economic significance of the source EUI and the electricity price gap remain. As shown in the 
bottom segment of Table 4, the higher the source EUI (the more energy usage per square foot) 
the higher the likelihood of default. Similarly, the higher the electricity price gap (the larger the 
difference between the realized and the expected electricity prices since the loan origination), 
the higher the likelihood of default. 
 
To our knowledge, these are the first reported empirical results strongly supporting an economic 
and statistical relationship between the energy efficiency of a building (controlling for the relative 
risk of electricity prices) and its default risk. Our evidence suggests that even with a relatively 
small sample (excepting the loans securitized through CMBS, which is a large and important 
market segment), building-level energy efficiency and local energy pricing risk are actuarial 
factors in the incidence of default. For this reason, since commercial real estate investors are 
the residual claimants on this risk exposure, these results show the importance of accounting for 
energy efficiency and locational price risk as part of the loan risk assessment process. 
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Table 4.  Estimates for the Loan-level Default using Log Source EUI: Linear Probability 
Specification and Logistic Regression (Foreclosure or REO = 1) 

Full Sample 
Linear Probability Specification Coefficient Standard   Coefficient Standard   
 Estimate Error t test Prob > t Estimate Error t test Prob > t 
Intercept -0.30784 0.0873 -3.53 0.0004 -0.20236 0.09907 -2.04 0.0414 
Log Source EUI 0.07742 0.01742 4.44 < .0001 0.04022 0.01813 2.22 0.0267 
Origination Loan-to-Value Ratio   0.00131 0.00035779 3.67 0.0003 
Coupon Spread to 10 Yr. Treasury   0.00951 0.00994 0.96 0.3389 
Electricity Price Gap   0.00001479 0.00000646 2.29 0.0222 
Time to Maturity on Balloon   -0.00057645 0.00030711 -1.88 0.0608 
Origination Year Fixed Effects No    Yes    
R2 0.019    0.0859    
N   947    916    

Office, Mixed Use and Retail Sample 
 Coefficient Standard   Coefficient Standard   
Linear Probability Specification Estimate Error t test Prob > t Estimate Error t test Prob > t 
Intercept -0.19342 0.16448 -1.18 0.2402 -0.40444 0.18466 -2.19 0.029 
Log Source EUI 0.06001 0.03159 1.9 0.058 0.07335 0.03129 2.34 0.0195 
Origination Loan-to-Value Ratio     0.00258 0.00096055 2.69 0.0074 
Coupon Spread to 10 Yr. Treasury     0.02188 0.01565 1.4 0.1628 
Electricity Price Gap     0.00003483 0.00001188 2.93 0.0035 
Time to Maturity on Balloon     -0.00189 0.00060375 -3.13 0.0018 
Origination Year Fixed Effects No    Yes    
R2 0.0005    0.1052    
N   492    473    
 Coefficient Standard   Coefficient Standard   
Logistic Regression Estimate Error χ2test Prob χ2 Estimate Error χ2 test Prob χ2 
Intercept -6.5488 2.3831 7.5519 0.006 -11.1449 2.8697 15.0825 0.0001 
Log Source EUI 0.8653 0.45 3.6966 0.0545 1.1714 0.5005 5.4788 0.0192 
Origination Loan-to-Value Ratio     0.0375 0.0132 8.0571 0.0045 
Coupon Spread to 10 Yr. Treasury     0.2616 0.1898 1.8982 0.1683 
Electricity Price Gap     0.000432 0.00016 7.2822 0.007 
Time to Maturity on Balloon     -0.0182 0.00625 8.4477 0.0037 
Origination Year Fixed Effects     Yes    
N   492    473    

 

5.3 Site EUI and Default Risk 

As argued above, the site EUI measure of energy efficiency does not as clearly differentiate 
efficiencies from the grid and those associated with the building. Nevertheless, for complete 
ness we report the results of estimating both the linear probability and the logistic regression for 
the full sample of merged Trepp and benchmark data buildings and for the sub-sample of office 
buildings. As shown in Table 5, as expected the results for site EUI are essentially the same 
although the level of statistical significance in the smaller office-only sample is somewhat 
reduced. The full sample results are reported in the upper third of the table. These results 
reinforce those found in the specification with the preferred source EUI measure. As shown, the 
magnitudes and signs of the site EUI and the electricity price gap remain unchanged from the 
earlier specification. The other underwriting covariates are similarly unaffected. 
 
Since fewer buildings in our merged sample reported a site EUI, the statistical power is 
somewhat reduced in the office-only sample. The magnitude and signs of the coefficients on 
both the site EUI and the electricity price gap remain unchanged from the earlier specification. 
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These results again suggest that the higher the site EUI (the more energy usage per square 
foot) the higher the likelihood of default. Similarly, the higher the electricity price gap i.e., the 
larger the difference between the realized and the expected electricity prices since the loan 
origination (where positive numbers indicate higher-than-expected actual prices), the higher the 
likelihood of default. 

Table 5.  Estimates for the Loan-level Default using Log Site EUI: Linear Probability 
Specification and Logistic Regression (Foreclosure or REO = 1) 

Full Sample 
Linear Probability Specification Coefficient Standard   Coefficient Standard   
 Estimate Error t test Prob > t Estimate Error t test Prob > t 
Intercept -0.09342 0.07402 -1.26 0.2072 -0.08215 0.08728 -0.94 0.3468 
Log Site EUI 0.02909 0.0169 1.72 0.0855 0.02605 0.0165 1.58 0.1147 
Origination Loan-to-Value Ratio   0.00157 0.00033723 4.65 < .001 
Coupon Spread to 10 Yr. Treasury   0.00214 0.01008 0.21 0.8322 
Electricity Price Gap   0.00001583 0.00000652 2.43 0.0154 
Time to Maturity on Balloon   -0.00065518 0.00031397 -2.09 0.0372 
Origination Year Fixed Effects No    Yes    
R2 0.0769    0.0859    
N  1002    972    

Office, Mixed Use and Retail Sample 
 Coefficient Standard   Coefficient Standard   
Linear Probability Specification Estimate Error t test Prob > t Estimate Error t test Prob > t 
Intercept -0.05633 0.07404 -0.76 0.4469 -0.10734 0.08375 -1.28 0.2002 
Log Site EUI 0.03169 0.01711 1.85 0.0644 0.02685 0.01658 1.62 0.1057 
Origination Loan-to-Value Ratio     0.0015 0.00034821 4.31 < .0001 
Coupon Spread to 10 Yr. Treasury     -0.00002364 0.00014793 -0.16 0.873 
Electricity Price Gap     0.00001901 0.00000629 3.02 0.0026 
Time to Maturity on Balloon     -0.00048188 0.00028264 -1.7 0.0885 
Origination Year Fixed Effects No    Yes    
R2 002    0.0701    
N   535    516    
 Coefficient Standard   Coefficient Standard   
Logistic Regression Estimate Error χ2test Prob χ2 Estimate Error χ2 test Prob χ2 
Intercept -4.1543 1.4916 7.7571 0.0054 -7.1918 1.9212 14.0136 0.0002 
Log Site EUI 0.4974 0.3397 2.1441 0.1431 0.6706 0.3602 3.4658 0.0627 
Origination Loan-to-Value Ratio     0.0325 0.0127 6.5177 0.0107 
Coupon Spread to 10 Yr. Treasury     -0.00306 0.00239 1.6482 0.1992 
Electricity Price Gap     0.00051 0.00015 11.5985 0.0007 
Time to Maturity on Balloon     -0.0116 0.00502 5.3588 0.0206 
Origination Year Fixed Effects     Yes    
N   535    516    

 

5.4 Energy Star Score and Default Risk 

In our final specification, reported in Table 6, we use the Energy Star score as our measure of 
building level energy efficiency. Recall that this measure is a relative ranking of a building’s 
energy efficiency compared to the national population of buildings where 100 is the highest 
ranking and 1 is the worst. We again report estimates for both a linear probability model and a 
logistic regression for both the full sample of buildings (with the merged benchmarking and 
Trepp data) and the sub-sample of office buildings. Surprisingly, the Energy Star score is the 
least well reported efficiency measure in our data. Our results therefore suffer from a further 
reduction of power; however, the economic meaningfulness appears unchanged. 
 
For both samples, the coefficients on both the Energy Star score and the electricity price gap 
have the anticipated economically meaningful signs. The results indicate that the higher the 
Energy Star score (i.e., the more energy-efficient the building), the lower the likelihood of 
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default. Consistent with the prior findings, the higher the electricity price gap (i.e.,the larger the 
difference between the realized and the expected electricity prices since the loan origination), 
the higher the likelihood of default. However, the Energy Star score is not statistically different 
from zero beyond the .05 significance level in the linear regression for the smaller sample, 
although it is statistically significant at standard levels in the logistic regression. The electricity 
price gap is significant beyond the .05 level for both data samples and in all three specifications. 
 
Overall, these results suggest that energy efficiency does “move the needle” on default 
incidence. Since underwriting in the mortgage market is based on actuarial predictions, these 
results are an important first step in assessing the ways in which energy efficiency metrics could 
be introduced into the commercial mortgage underwriting process. Having source EUI 
information for buildings, especially in the benchmark cities, would be a relatively straight- 
forward requirement and could easily be introduced into the standardized pro forma data fields 
that are currently considered as a matter of course. A second channel whereby the source EUI 
could be introduced is in the engineering report that is also typically required for large loan 
underwriting. Obtaining the electricity price gap forecasts is also a tractable data-gathering 
problem. Some states have their locational marginal prices reported on-line by ISO region. 
These data are updated continually by the ISOs. Thus, collecting and managing these data for 
sale to lending underwriters should be a rather straightforward service function that many 
existing data vendors could quite readily undertake. 

Table 6.  Estimates for the Loan-level Default using Level of Energy Star Score: Linear Probability 
Specification and Logistic Regression (Foreclosure or REO = 1) 

Full Sample 
Linear Probability Specification Coefficient Standard   Coefficient Standard   
 Estimate Error t test Prob > t Estimate Error t test Prob > t 
Intercept 0.11709 0.02825 4.15 < .0001 0.0685 0.05583 1.23 0.2202 
Log Site EUI -0.00056148 0.0004001 -1.4 0.1609 -0.00073838 0.00039119 -1.89 0.0595 
Origination Loan-to-Value Ratio   0.00145 0.00039088 3.72 0.0002 
Coupon Spread to 10 Yr. Treasury   -0.00002261 0.00015508 -0.15 0.8841 
Electricity Price Gap   0.00002103 0.00000688 3.06 0.0023 
Time to Maturity on Balloon   -0.00055819 0.00031273 -1.78 0.0747 
Origination Year Fixed Effects No    Yes    
R2 0.0019    0.067    
N   828    802    

Office, Mixed Use and Retail Sample 
 Coefficient Standard   Coefficient Standard   
Linear Probability Specification Estimate Error t test Prob > t Estimate Error t test Prob > t 
Intercept 0.1865 0.05788 3.22 0.0014 0.18383 0.11046 1.66 0.1865 
Log Site EUI -0.00102 0.0007852 -1.3 0.1929 -0.00134 0.00077931 -1.72 -0.00102 
Origination Loan-to-Value Ratio     0.00183 0.00099161 1.84  
Coupon Spread to 10 Yr. Treasury     -0.00028944 0.00020694 -1.4  
Electricity Price Gap     0.00004327 0.00001234 3.51  
Time to Maturity on Balloon     -0.00166 0.00053658 -3.09  
Origination Year Fixed Effects No    Yes   No 
R2 0.002    0.0701    
N   448    516    
 Coefficient Standard   Coefficient Standard   
Logistic Regression Estimate Error χ2test Prob χ2 Estimate Error χ2 test Prob χ2 
Intercept -1.3896 0.5231 7.0583 0.0079 -2.5141 1.3571 3.4319 0.0639 
Log Site EUI -0.00952 0.00733 1.6891 0.1937 -0.0148 0.0081 3.3318 0.068 
Origination Loan-to-Value Ratio     0.0279 0.0139 4.0125 0.0452 
Coupon Spread to 10 Yr. Treasury     -0.00301 0.00264 1.297 0.2548 
Electricity Price Gap     0.000521 0.000164 10.1174 0.0015 
Time to Maturity on Balloon     -0.0149 0.00572 6.7447 0.0094 
Origination Year Fixed Effects     Yes    
N   499    433    
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6 Impact of Building Asset and Operational Characteristics on 
Default Risk 

Results from the default risk analysis as described in section 5 above demonstrate a statistically 
significant link between default risk and two key energy factors -- source EUI and electricity 
price gap -- albeit for a limited dataset, with some important limitations and caveats. From an 
underwriting perspective, the ensuing issue is to understand the default risk implications for 
individual loans, i.e., how does energy use and price in a specific building affect the default risk 
on its mortgage?  
 
Energy use in any given building is a function of asset and operational characteristics.  

● Asset characteristics in this context refer to the fixed elements of the building, such as 
walls, windows, HVAC equipment, light fixtures, etc. Asset characteristics generally do 
not vary over the course of a mortgage term unless the building is renovated or 
retrofitted.  

● Operational characteristics in this context refers to parameters that might very well vary 
over the course of the loan, such as occupant density, occupancy schedules, plug loads, 
lighting and HVAC equipment control settings, and weather.  

 
Ideally, such an analysis would be done empirically with a data set that includes detailed 
building asset and operational characteristics for a large number of representative buildings. 
However such a data set does not exist and would be cost-prohibitive to assemble for a large 
enough sample.18  
 
As an alternative, we chose to do scenario analysis using energy simulation. The purpose of 
this scenario analysis was to analyze the impact of both asset and operational characteristics on 
energy use and therefore default risk. We used the EnergyPlus building energy simulation 
software19 to model the range of source EUI variations attributable to various asset and 
operational characteristics and their combinations. While such energy simulations are not as 
useful for determining actual energy use, they are very useful for estimating the relative impact 
of changes in asset and operational characteristics. These relative changes in source EUI can 
then be used to determine the relative impact on default risk using the regression coefficients 
from the empirical default risk model described above.  
 
In the remainder of this section we describe the following: 

● The energy simulation models 
● Variations in source EUI due to operational parameters 
● Variations in source EUI due to year-to-year weather variation 
● Variations in default risk due to asset and operational characteristics. 

                                                
 
18 Over five years of experience with data collection for the DOE Building Performance Database has shown that 
asset and operational characteristics are not routinely collected and compiled in a consistent manner. 
19 https://energyplus.net/ 
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6.1 Simulation Models 

We developed energy models representing a large office building in two different climate zones, 
for three different asset efficiency levels, as shown in Table 7. The high asset efficiency model 
generally conforms to ASHRAE Standard 90.1-2013. The medium asset efficiency model 
generally conforms to ASHRAE 90.1-2004. The low asset efficiency model is intended to 
represent a building constructed before 1980 but with lighting and HVAC retrofitted. Therefore 
the only difference between medium and low asset efficiency is the window and wall 
construction. In all cases, we used ASHRAE 90.1-2013 assumptions for plug loads, occupancy 
levels, and lighting. As a sensitivity test, we also modeled a medium-size office building for one 
climate zone. The approach we used can be extended to other building types and locations, but 
that was beyond the scope of this illustrative scenario analysis.  

Table 7. Asset efficiency levels modeled for large office buildings for scenario analysis  

Asset efficiency 
level HVAC Lighting Walls Windows 

Plug load and 
occupant 
density 

Lighting, 
plug, occ 
schedules 

High 90.1-2013 90.1-2013 90.1-2013 90.1-2013 90.1-2013 90.1-2013 
Medium 90.1-2004 90.1-2004 90.1-2004 90.1-2004 90.1-2013 90.1-2013 
Low 90.1-2004 90.1-2004 pre-1980 pre-1980 90.1-2013 90.1-2013 

 
We used the DOE prototype models20 as the basis for our models. These models were 
developed to be representative of  given building types and sizes and have been used 
extensively for stock-level energy analysis., We then modified selected parameters as indicated 
in Table 7. All other parameters remained the same as the prototype model. It should be noted 
that the large office building model includes a data center that accounts for about a third of the 
total energy use of the building. We did not vary the efficiency level of the data center.  
 
Figure 7 shows the building geometry and typical floor thermal zones for the large office model. 
The key characteristics of the building geometry and HVAC type are listed in Table 8.  
 

 
Figure 7.  Large office building model geometry and thermal zones 

 

                                                
 
20 https://www.energycodes.gov/development/commercial/prototype_models 
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Table 8.  Building characteristics for large office building model.  
Total Floor Area (ft2) 498,600 
Occupant density (ft2/per) 200 
Lighting load (W/ft2) 0.82 
Plug load (W/ft2) 0.75 
Building Shape Rectangular 
Aspect Ratio 1.5 
Number of Floors 12 + Basement 
Window Fraction (Window to Wall 
Ratio) 

40% of above-grade gross walls 

Thermal Zoning Four perimeter zones, one core zone and one IT closet zone per floor. 
Perimeter zone depth: 15 ft. 
Datacenter zone is 28% of the basement floor area. 

Floor to Ceiling Height (ft)  9 
Floor to Floor Height (ft)  13 
Roof type  Built-up roof, insulation entirely above deck 
Exterior Wall Type Steel-framed mass wall 
Exterior Walls – Gross Area (ft2) 124,750 
Exterior Walls – Net Area (ft 2) 74,850 
Roof Construction Type Roof membrane + Roof insulation + metal decking 
Roof - Total Area (ft2) 38,350 
Window Total Area (f2) 49,900 
Infiltration (ACH) 0.746 
Heating Type Gas hot water boiler 
Cooling Type Water-source DX cooling coil with fluid cooler for the datacenter and IT 

closets. Two water-cooled centrifugal chillers for the rest of the building 
Fan Control Constant speed fan for data centers and variable speed fan for the rest of 

the building 
Ventilation (L/s·per) 8 
Service Water Heating Type Storage tank 
Service Water Fuel Natural gas 
Boiler Thermal Efficiency (%) 80 
Hot Water Setpoint (ºF) 140 

 
The models for each building and climate were parametrically varied for a range of operational 
practices and weather years, as described below. 

6.2 Variations in Operational Parameters 

The quality of building operational practice varies widely and is difficult to characterize and 
categorize, especially given the heterogeneity of buildings. For this analysis, three levels of 
practice – good, average, and poor – for various operational parameters were defined based on 
a similar prior study (Mathew et al. 2012, Wang et al. 2012). The intent of this analysis is to 
illustrate the range of impacts due to different operational practices. It should be noted that the 
range of impacts for any given building will depend on the specific characteristics of that 
building. 
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Table 9 summarizes the range of practice modeled for various operational parameters. Good 
practice represents design intent or optimal performance of the building. For average and poor 
practice, the analysis assumes the building has the capability to run at the good practice level, 
but runs less efficiently due to poorer facility management. It should be noted that levels of 
practice vary widely across the building stock and what is considered average in one region or 
organization may be different in another region or organization. The intent of this scenario 
analysis is to characterize a reasonable range of practice. It should also be noted that the list of 
operations parameters modeled is not comprehensive and there are several other operational 
parameters that affect energy use but were not part of this analysis, due to modeling limitations 
or scope (e.g., maintenance, static pressure reset, building pressure control). 
 

Table 9.  Range of practice for various operations parameters 
Factor Good practice Average practice Poor practice 

Lighting controls Daylight-dimming + occ sensor Occ sensor only Timer only 
Plug load controls Turn off when occupants leave Sleep mode by itself No energy saving measures 

HVAC schedule optimal start 2hr +/- Occupant sch n/a 

Thermostat settings 68°F heating and 78°F cooling 
Setback: 60 - 85 

70°F heating and 76°F 
cooling 

Setback: 68 - 80 

72°F heating and 74°F 
cooling 

No setback 

Supply air temp reset SAT reset base on warmest 
zones 

SAT reset based on stepwise 
function of outdoor air 

temperature 

Constant supply air 
temperature 

VAV box min flow 
settings 15% of design flow rate. 30% of design flow rate. 50% of design flow rate. 

Economizer controls Enthalpy dry bulb none/broken 
Chilled water supply 

temp reset 
Reset chilled water temperature 

based on cooling demand. 
Linear relationship with 
outside air temp (OAT). 

No reset with constant year-
round. 

Chiller sequencing 
Kick on the lag chiller when the 

lead chiller reaches its peak 
efficiency. 

Kick on the lag chiller when 
the chilled water temperature 

cannot be maintained. 
Always running two chillers 

Hot water supply temp 
reset 

Reset the hot water supply 
temperature according to 

heating load. 
Linear relationship with OAT. No reset with constant year-

round. 

 
Figure 8 presents the annual source EUI variation due to the range of practice for each 
operational parameter for three levels of asset efficiency for climate zone 2A (warm-humid, 
represented by Houston, Texas). Figure 9 presents the same for climate zone 4A (warm-humid, 
represented by Baltimore, Maryland). The figures show the impact of good and poor practice 
relative to average practice. For example, per Figure 8, medium asset efficiency in climate zone 
4A shows that poor practice for VAV minimum flow control can cause a ~7% increase in source 
EUI relative to average practice and good practice causes a ~2% decrease in source EUI 
relative to average practice. Thus, the overall range is ~9%.  
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Figure 8.  Relative impact of operations parameters in climate zone 2A (warm humid, similar to 

Houston, TX) for large office buildings with high (top), medium (middle), and low (bottom) asset 
efficiency.  
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Figure 9.  Relative impact of operations parameters in climate zone 4A (mixed humid, similar to 

Baltimore) for large office buildings with high (top), medium (middle), and low (bottom) asset 
efficiency.  
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Some observations worth noting are: 

● Lighting control, thermostat settings and variable air volume (VAV) minimum flow control 
generally show the greatest impact.  

● In general, the reduction in energy use from average to good practice is much less than 
the increase in energy use due to poor practice.  

● The range of these results is largely consistent with evidence from commissioning 
projects.  

 
Next, we analyzed the combined impact of poor and good practice (relative to average) in all 
parameters, with results shown in Figure 10. These results, in effect, demonstrate the outer 
bounds of the range of impact.  

● The combined impacts of these operational parameters are significant in both climate 
zones, for all asset efficiency levels. Good practice reduces source EUI relative to 
average practice by 10-16% in climate zone 2A and 9-12% in climate zone 4A. Poor 
practice increases source EUI 25-33% in climate zone 2A and 33-45% in climate zone 
4A. As a point of comparison, capital-intensive aggressive retrofits typically yield savings 
in the 20-40% range. Therefore poor operational practices could effectively negate the 
savings from aggressive retrofits.  

● The range of impact is lower for buildings with higher asset efficiency. Stated differently, 
poor operational practices have a greater impact in buildings with poorer asset 
efficiency.  

● Again, note that these variations are just the effect of operational practices, and not 
differences in fixed asset characteristics. That is, two identical buildings with the same 
building construction and equipment can show wide variation in energy use just due to 
their operational practices. 

 
As a sensitivity test, we also modeled a medium-sized office building with medium asset 
efficiency in climate zone 4A, with results shown in Figure 11. The HVAC system for the 
medium office is packaged rooftop units (RTU) while the large office model has a central HVAC 
plant. Therefore, some of the HVAC operational parameters used for the large office analysis do 
not apply. The combined effect of poor practice across all parameters in the medium-sized 
office building resulted in source EUI increasing by 110% over average practice. Good practice 
yielded a reduction of 18%. Thus, the relative impacts are much higher for the medium office 
building (compare to Figure 10). Part of the reason for this is that the large office model includes 
a data center that was a significant portion of the total load and did not vary across the 
parametric analysis. Therefore this reduced the overall relative impacts. This underscores the 
earlier point that the range of impacts will vary based on the specific characteristics of any given 
building.  
 



30 

 
Figure 10.  Combined impact of poor and good practice across all operational parameters for large 

office buildings in climate zones 2A (Houston) and 4A (Baltimore), for high, medium, and low 
asset efficiency.  

 
 

 
Figure 11.  Relative impact of operations parameters for medium-sized office building with medium 

asset efficiency in climate zone 4A (mixed humid, similar to Baltimore).  
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6.3 Variations Due to Weather 

Year-to-year variation in weather can change total source EUI, all others parameters being 
constant i.e., hotter summers will cause more cooling energy use and colder winters will cause 
more heating energy use, driving up annual source EUI for the building. In order to assess the 
relative impact of these year-to-year differences, we ran the models using actual weather data 
for 15 years (from 2001 to 2015) for both climate zones, and for all three asset efficiency levels. 
The actual weather data were obtained from a commercial weather data vendor. In all models 
we assumed average level of practice for operational parameters.  
 
Figure 12 shows the % change in source EUI for each year relative to the average source EUI 
over 15 years. The overall range is only -1% to +1.5%. This suggests that year-to-year weather 
variations in a given location are not a significant source of volatility for annual source EUI for 
large office buildings. The impacts may be larger for perimeter-dominated smaller buildings. 
Note that these impacts are for annual source EUI. The seasonal impacts (e.g., for cooling 
energy in summer) may be much higher, but those can be compensated for over the course of a 
year (e.g., a year with an unusually hot summer may have a mild winter). Finally, we are careful 
to note that this finding should not be confused and conflated with climate variations; i.e., the 
variations between different locations. It refers only to year-on-year weather variations for a 
given location.  
 

 
Figure 12.  Year-to-year weather variations from 2001-2015 for large office buildings in climate 

zones 2A and 4A, for high, medium, and low asset efficiency and average operations practices. 
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6.4 Impact of Source EUI Variations on Default Risk 

In order to characterize how these variations in source EUI translate into variations in default 
risk, we extended the scenario analysis as follows. We used the DOE Building Performance 
Database (BPD) to obtain a median source EUI for large office buildings in each of the climate 
zones. The BPD contains measured building performance data on over 220,000 non-residential 
buildings. For example, Figure 13 shows a median source EUI of 172 kBtu/sf for large office 
buildings in climate zone 2A. We then applied the relative impacts of poor and good operational 
practices, high and low asset efficiency, and 2001-2015 weather variations from the simulation 
analysis to these empirical source EUI values to obtain the absolute values for the range of 
variation in source EUI. Finally, these absolute values were used with the coefficients from the 
default risk logistic regression model to obtain a change in default risk due to these variations in 
source EUI. Table 10 summarizes the results, which also show the default risk relative to the 
Trepp average default risk of 8%.  
 

 
Figure 13.  Source EUI distribution for office buildings in climate zone 2A with floor area between 

300,000-700,000 sf.  
 

Table 10.  Impact of source EUI variations on default risk.  
Case Source EUI change 

from basecase (%) 
Source EUI (kBtu/sf.yr) Default risk change 

(basis points) 
Default risk change 
from TREPP avg. (%) 

2A Basecase - 172 - - 
2A Poor practice +32.5% 228 +90 +11.2% 
2A Good practice -16.5% 144 -57 -7.2% 
2A Low asset efficiency +0.8% 173 +3 +0.3% 
2A High asset efficiency -20.3% 137 -72 -9.0% 
2A Weather 2001-15 high +1.4% 174 +4 +0.6% 
     
4A Basecase - 169 - - 
4A Poor practice +41.7% 239 +111 +13.4% 
4A Good practice -12.2% 148 -41 -5.2% 
4A Low asset efficiency +2.1% 173 +7 +0.8% 
4A High asset efficiency -15.6% 143 -54 -6.7% 
4A Weather 2001-15 high +0.8% 170 +3 +0.3% 
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The results show that poor operational practices increase default risk by 90 basis points (11.2% 
increase relative to Trepp average) for the building in climate zone 2A and 111 basis points 
(13.4% increase relative to Trepp average) for the building in climate zone 4A. Good operational 
practices decrease default risk by 57 basis points (7.2% decrease relative to TREPP average) 
for the building in climate zone 2A and 41 basis points (5.2% decrease relative to TREPP 
average) for the building in climate zone 4A. 
 
High asset efficiency decreases default risk by 72 basis points (9% decrease relative to Trepp 
average) for the building in climate zone 2A and 54 basis points (6.7% decrease relative to 
Trepp average) for the building in climate zone 4A.21 

7 Conclusions 
This is a first study of the effects of building-level energy consumption and the time-series risk of 
energy prices on the default risk of commercial mortgages. We apply measures of energy 
consumption using information on buildings’ source and site EUIs obtained from a unique data 
set that merges the building-level data collected through the benchmarking ordinances of six 
cities with origination and performance data for commercial mortgages that have been 
securitized into commercial mortgage backed securities (CMBS). We develop a unique measure 
of locational energy price risk called the electricity price gap, computed as the difference 
between realized and expected electricity prices since the date of loan origination. We find that 
building-level energy consumption and the electricity price gap are statistically and economically 
associated with commercial mortgage defaults. Using building energy simulations, we find that 
building asset characteristics and operational practices that affect source EUI can have very 
important effects on the likelihood of default. Overall these results suggest that building level 
energy efficiency and locational price risk do move the needle on default and these factors 
should be included in the risk evaluations of new mortgage originations. 
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